

Radar Phenomenology Modeling and High-Fidelity Data Generation*

Jameson Bergin
Paul Techau
Information System Laboratories, Inc.

jsb@isl-inc.com

pmt@isl-inc.com

Outline

DARPA and AFRL

An emerging technology in radar signal processing

RF phenomenology modeling

- overview of the Splatter, Clutter, and Target Signal (SCATS) model
- ground scatter modeling
- comparison to experimental data

// Other effects

- internal clutter motion (ICM)
- ground traffic
- discrete scatterers
- array calibration

Heterogeneous clutter example

- effects of heterogeneous terrain
- effects of ICM
- effects of ground traffic

// Overview of KASSPER-02 Workshop data set

// Summary

Information Systems Laboratories, Inc.

Splatter, Clutter, and Target Signal Model

DARPA and AFRL

An emerging technology in radar signal processing

- Developed under a number of DARPA, Army, Navy, and Air force programs since 1989
- Provides characterization of complex RF environments
- // Uses include system analysis, test planning, signal processing algorithm development
- The model provides characterization of:
 - target return
 - direct path signal
 - ground scattered signal (clutter for radar)
 - direct path signal from interferer
 - ground scattered interference signal (hot clutter, splatter, or terrainscattered interference)

Information Systems

Laboratories, Inc. KASSPER-02 – 04/02 - 3

Ground Scatter Modeling

DARPA and AFRL

- Transmit and receive locations defined, along with an area of calculation
- Area of calculation is divided into a grid of user defined cell sizes
- // Propagation to each cell is calculated used DTED-based terrain profiles and SEKE
- Power received per unit area from each cell calculated by using radar equation
- Provides signal strength, path range, path Doppler, and AoA for each scattering patch
- Other effects (e.g. ICM, discretes, ground traffic) may be added

$$P_{r_k} = \frac{P_t G_{t_k} F_{t_k}^2}{4\pi R_{t_k}^2} \frac{\sigma_0 F_{r_k}^2}{4\pi R_{r_k}^2} \frac{G_{r_k} \lambda^2}{4\pi}$$

Scattering Coefficient

DARPA and AFRL

An emerging technology in radar signal processing

Constant scattering coefficient

// "Monostatic equivalent" model

- use measured monostatic data from Radar Cross Section Handbook
- apply bistatic equivalence theorem by choosing scattering coefficient as a function of the angle between terrain local normal and the bistatic bisector of the incident and scattered rays

// Two-scale composite models

- two scale of roughness model
- polarization dependent
- based on surface roughness parameters
- modified version from RCS Handbook using Phillips height spectrum rather than Gaussian

Polarimetric (Composite) Models

DARPA and AFRL

- // Polarized fields from a (tilted) dipole
 - find polarization vector
 - resolve into horizontal (TE) and vertical (TM) components
 - calculate gain for each component
- // Convert to coordinates of plane tangent to the local terrain
- // Calculate scattering coefficient σ_0 for each component (HH, HV, VH, VV)
- **M** Calculate received power for each component
- Combine components incoherently

$$P_{R} = \frac{P_{T}}{(4\pi r_{1}^{2})(4\pi r_{2}^{2})} \frac{\lambda^{2}}{4\pi} \begin{bmatrix} G_{T}^{H} F_{T}^{H} \sigma_{0}^{HH} F_{R}^{H} G_{R}^{H} + G_{T}^{H} F_{T}^{H} \sigma_{0}^{HV} F_{R}^{V} G_{R}^{V} + \\ G_{T}^{V} F_{T}^{V} \sigma_{0}^{VH} F_{R}^{H} G_{R}^{H} + G_{T}^{V} F_{T}^{V} \sigma_{0}^{VV} F_{R}^{V} G_{R}^{V} \end{bmatrix}$$

Two Scale Composite Models

DARPA and AFRL

An emerging technology in radar signal processing

Two scales of roughness model

- large scale, physical optics ('quasi-specular') contribution
- small scale, perturbation ('Bragg-scatter') contribution

Polarization dependent

- function of incident and scattered polarization (HH,HV,VH,VV)
- rough surface scattering has strong polarization dependence

Based on surface roughness parameters

- large scale heights, correlation lengths and/or slopes
- small scale heights, correlation lengths and/or slopes

// Height spectrum - Gaussian (RCS HB) vs. Phillips

- statistical representation of surface roughness
- impacts parameter selection
- Phillips height spectrum primarily used in SCATS

Mountain Top Monostatic Clutter

DARPA and AFRL

An emerging technology in radar signal processing

rth DTED

- Simulated clutter maps using 'bald earth' and DTED shown
- Radar parameters match Mountaintop IDPCA65v1 data
- Significant differences observed between bald earth and DTED simulations

Mountain Top Monostatic Clutter (cont.)

DARPA and AFRL

An emerging technology in radar signal processing

relative power (dB)

- Range-Doppler clutter maps shown for RSTER and SCATS simulations
- SCATS results shown both with and without DTED
- SCATS w/ DTED results in a significantly better match to the experimental data
 - SCATS captures a majority of the clutter features

Mountain Top Bistatic Scatter

DARPA and AFRL

An emerging technology in radar signal processing

AZ

- Comparison of delay spread for RSTER (Mountain Top) data and SCATS
- Power relative to direct path power plotted

Outline

DARPA and AFRL

An emerging technology in radar signal processing

RF phenomenology modeling

- overview of the Splatter, Clutter, and Target Signal (SCATS) model
- ground scatter modeling
- comparison to experimental data

// Other effects

- internal clutter motion (ICM)
- ground traffic
- discrete scatterers
- array calibration

Heterogeneous clutter example

- effects of heterogeneous terrain
- effects of ICM
- effects of ground traffic

// Overview of KASSPER-02 Workshop data set

// Summary

Information Systems Laboratories, Inc.

Internal Clutter Motion Model

DARPA and AFRL

An emerging technology in radar signal processing

Billingsley empirical model has DC term plus an AC (noise) component:

$$P(v) = \frac{r}{r+1}\delta(f) + \frac{1}{r+1}\frac{\beta\lambda}{4}e^{-\frac{\beta\lambda}{2}|f|}$$

// DC/AC ratio r is found from:

$$10\log r = -15.5\log w - 12.1\log f_c + 63.2$$

Correlation (covariance matrix taper or CMT) function becomes:

$$r_c(\tau) = \frac{r}{r+1} + \frac{1}{r+1} \frac{(\beta \lambda)^2}{(\beta \lambda)^2 + (4\pi \tau)^2}$$

Information Systems Laboratories, Inc.

KASSPER-02 - 04/02 - 12

Clutter Discretes

- // Can produce under-nulled clutter due to training methods
- Discrete density is a function of population centers
- Closer to population centers => greater probability of a discrete
- Larger RCS discretes closer to population centers

Ground Traffic Model

DARPA and AFRL

An emerging technology in radar signal processing

- // Road data extracted from Census Bureau TIGER/Line database
- Ground traffic placed along the road segments using an exponential distribution to achieve a Poisson traffic arrival distribution
- Latitude and longitude calculated for each vehicle two sets of vehicle positions per segment (opposing lane assumed)
- // Traffic clutters can be placed as desired
- Representative example distribution of ground traffic:

	Cars	Trucks
% of total traffic	80 %	20 %
Avg spacing	50 m	50 m
Speed on Interstate	60 mph	60 mph
Speed on US Hwy	50 mph	50 mph
Avg RCS	5 dBsm	15 dBsm
RCS fading model	Rayleigh	Rayleigh

Information Systems Laboratories, Inc.

Array Calibration Errors/Channel Mismatch

DARPA and AFRL

An emerging technology in radar signal processing

Angle-independent channel complex gain errors

- gain and phase errors on each channel due to errors in line lengths, receiver gain, etc.
- manifests as rank-one CMT on (total) signal covariance
- alternately may view as full rank (orthonormal if phase only) transformation of the array data

Angle-dependent array manifold errors

- results from
 - element position errors
 - mutual coupling
 - element/super element pattern errors
- manifests as separate, angle-dependent rank-one CMT on each signal incident on the array

// Channel mismatch

- channel mismatch across the element/receiver band reduces ability to cancel clutter (i.e., varying channel transfer functions)
- rank of CMT on total signal covariance > 1

Simulation of Calibration Errors/Channel Mismatch

DARPA and AFRL

An emerging technology in radar signal processing

Angle-independent calibration errors

- complex gain errors (i.e., amplitude and phase)
- results from line length variations, receiver characteristic variations, etc.

Angle-dependent calibration errors

- modeled by element position errors on each subarray
- element position errors consistent with ~35 dB achievable sidelobes (Taylor weighting)
- element position errors independent from subarray to subarray (each subarray has a different gain pattern)

Channel mismatch

- transfer function mismatch channel to channel
- implementation more complex to be included in later data sets

Future Simulation Features

DARPA and AFRL

- More extensive use of land use and land cover data (LULC)
- // Improved propagation models for SBR
- Bandwidth effects decorrelation across array face
- Realistic target and ground traffic RCS (probability distribution) based on models or measurements
- EM model-based subarray and channel calibration errors
- Channel transfer function mismatch

Outline

DARPA and AFRL

An emerging technology in radar signal processing

RF phenomenology modeling

- overview of the Splatter, Clutter, and Target Signal (SCATS) model
- · ground scatter modeling
- comparison to experimental data

// Other effects

- internal clutter motion (ICM)
- ground traffic
- discrete scatterers
- array calibration

Heterogeneous clutter example

- effects of heterogeneous terrain
- effects of ICM
- effects of ground traffic

// Overview of KASSPER-02 Workshop data set

// Summary

Information Systems Laboratories, Inc.

Heterogeneous Clutter Example

DARPA and AFRL

Site-Specific Terrain Effects

DARPA and AFRL

- X-band LEO space-based radar example
 - 770 km altitude
 - speed of 7 km/s
- // Comparison of bald earth and terrain-specific clutter

Site-Specific Terrain Effects (cont.)

DARPA and AFRL

- Power versus range shown for a full aperture beam
- // Hamming pattern
- Significant Clutter amplitude variations

Heterogeneous Terrain Impact on SINR

DARPA and AFRL

An emerging technology in radar signal processing

- // DoFs: 10 pulses, 5 beams
- // 100 training bins
- # 10 dB diagonal loading

- // Terrain effects result in under-nulled clutter

Information Systems Laboratories, Inc.

KASSPER-02 - 04/02 - 22

Ground Traffic Effects Example

Doppler (m/s)

Information Systems Laboratories, Inc.

Doppler (m/s)

Ground Traffic Effects Example (cont.)

1160

-10

-30

10

0

Doppler (m/s)

DARPA and AFRL

An emerging technology in radar signal processing

-30

10

0

Doppler (m/s)

Information Systems Laboratories, Inc.

-10

KASSPER-02 - 04/02 - 24

Outline

DARPA and AFRL

An emerging technology in radar signal processing

// RF phenomenology modeling

- overview of the Splatter, Clutter, and Target Signal (SCATS) model
- ground scatter modeling
- comparison to experimental data

// Other effects

- internal clutter motion (ICM)
- ground traffic
- discrete scatterers
- array calibration

Heterogeneous clutter example

- effects of heterogeneous terrain
- effects of ICM
- effects of ground traffic

Moverview of KASSPER-02 Workshop data set

// Summary

Information Systems Laboratories, Inc.

Maps of Simulation Area

KNOWLEDGE-AIDED SENSOR SIGNAL PROCESSING

DARPA and AFRL

An emerging technology in radar signal processing

Information Systems

/Havilah

Laboratories. Inc. KASSPER-02 - 04/02 - 26

Weapons Center

Range Swath and Steering Direction

on

DARPA and AFRL

- Scatter map for simulation
- // Overlays:
 - range contours for 35 and 50 km shown
- Azimuth contours of main beam shown
- Steering direction is 195°
- // Heading is 270°

Simulation Parameters

DARPA and AFRL

An emerging technology in radar signal processing

Parmeter	Value
RF frequency	1240 MHz
Bandwidth	10 MHz
PRF	1984 Hz
Peak Power	15 kW
Duty factor	10%
Noise figure	5 dB
System losses	9 dB
Platform speed	100 m/s
Platform altitude	3 km
Transmit aperture	8 vertical x 11 horizontal
Receive aperture*	8 vertical x 1 horizontal
Horizontal antenna spacing	10.9 cm
Vertical antenna spacing	14.07 cm
Number of receive sub-apertures	11
Front-to-back ratio	25 dB

*each channel – 11 channels total

Simulation Antenna Array

DARPA and AFRL

- // 11 x 8 element array (similar to MCARM)
- Columns of elements combined into single subarray/superelement
- Array steered to 195° azimuth on transmite
- Calibration errors introduced to produce overall sidelobe level of approximately 35 dB in azimuth and elevation

Outline

DARPA and AFRL

An emerging technology in radar signal processing

// RF phenomenology modeling

- overview of the Splatter, Clutter, and Target Signal (SCATS) model
- ground scatter modeling
- comparison to experimental data

// Other effects

- internal clutter motion (ICM)
- ground traffic
- discrete scatterers
- array calibration

Heterogeneous clutter example

- effects of heterogeneous terrain
- effects of ICM
- effects of ground traffic

// Overview of KASSPER-02 Workshop data set

// Summary

Information Systems Laboratories, Inc.

Summary

DARPA and AFRL

An emerging technology in radar signal processing

High fidelity radar simulations

- real-world effects: heterogeneous terrain, ground traffic, targets, ICM, sensor calibration errors
- heterogeneous clutter data set with ground traffic

// Future data sets

- more extensive use of land use and land cover data (LULC)
- bandwidth effects decorrelation across array face
- realistic target and ground traffic RCS (probability distribution) based on models or measurements
- EM model-based subarray and channel calibration errors
- channel transfer function mismatch
- improved propagation models for SBR
- space-based radar